Abstract
Phytic acid is a major determinant of zinc bioavailability. Little is known about phytic acid intakes or indices of zinc bioavailability in type 2 diabetes mellitus (DM), a condition that predisposes to zinc deficiency. The aim of this cross-sectional study was to measure and explore the relationships among phytic acid intake, zinc bioavailability, and molecular markers of zinc homeostasis in 20 women with DM compared to 20 healthy women. The phytate/zinc, (calcium)(phytate)/zinc, and (calcium + magnesium)(phytate)/zinc molar ratios were used to indicate zinc bioavailability. Plasma zinc concentrations and zinc transporter (ZnT1, ZnT8, and Zip1) gene expression in mononuclear cells were measured. Participants with DM consumed 1,194 ± 824 mg/day (mean ± SD) phytic acid, an amount similar to the intake of healthy women (1,316 ± 708 mg/day). Bread products and breakfast cereals contributed more than 40 % of the phytic acid intake in each group. A positive relationship was observed in all participants between phytic acid and dietary fiber (r = 0.6, P < 0.001) and between dietary fiber and the (calcium)(phytate)/zinc ratio (r = 0.5, P < 0.001). Compared to the healthy group, the messenger RNA ratio of ZnT1 (zinc export) to Zip1 (zinc import) was lower in participants with DM, which may indicate perturbed zinc homeostasis in the disorder. The plasma zinc concentration was not predicted by age, body mass index, health status, zinc bioavailability, or zinc transporter expression. Healthy and diabetic women consume phytic acid in amounts that are likely to decrease the bioavailability of dietary zinc. Recommendations to consume greater amounts of dietary fiber, much of which is associated with phytate, increase the risk of zinc deficiency.


Similar content being viewed by others
References
Samman S (2012) Zinc. In: Mann JI, Truswell AS (eds) Essentials of human nutrition, 4th edn. Oxford University Press, Oxford, pp 171–175
Samman S (2007) Zinc. Nutr Diet 64:S131–S134
Foster M, Samman S (2010) Zinc and redox signalling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 13:1549–1573
Pai L, Prasad AS (1988) Cellular zinc in patients with diabetes mellitus. Nutr Res 8:889–897
Kinlaw WB, Levine AS, Morley JE et al (1983) Abnormal zinc metabolism in type II diabetes mellitus. Am J Med 75:273–277
Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089
Foster M, Hancock D, Petocz P, Samman S (2011) Zinc transporter gene expression is co-ordinately expressed in men and women independently of dietary or plasma zinc. J Nutr 141:1195–1201
Chimienti F, Devergnas S, Pattou F et al (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206
Wijesekara N, Chimienti F, Wheeler MB (2009) Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab 11:S202–S214
Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601
Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for Type 2 diabetes. Nature 445:881–885
Sun Q, van Dam RM, Willet WC et al (2009) Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care 32:629–634
Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546
Oberleas D (1983) The role of phytate in zinc bioavailability and homeostasis. In: Inglett GA (ed) Nutritional bioavailability of zinc. American Chemical Society, Washington, pp 145–158
Sandberg AS, Hasselblad C, Hasselblad K et al (1982) The effect of wheat bran on the absorption of minerals in the small intestine. Br J Nutr 48:185–191
World Health Organization (1996) Trace elements in human nutrition and health. WHO, Geneva
Simpson CJ, Wise A (1990) Binding of zinc and calcium to inositol phosphates (phytate) in vitro. Br J Nutr 64:225–232
Davies NT, Carswell AJP, Mills CF (1985) The effect of variation in dietary calcium intake on the phytate–zinc interaction in rats. In: Mills CF, Bremner I, Chesters JK (eds) Trace elements in man and animals—TEMA 5. CAB, Wallingford, pp 456–457
Wise A (1995) Phytate and zinc bioavailability. Int J Food Sci Nutr 46:53–63
Lönnerdal B, Sandberg AS, Sandström B et al (1989) Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J Nutr 119:211–214
Sandström B, Sandberg AS (1992) Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. J Trace Elem Electrolytes Health Dis 6:99–103
Holland B, Welch AA, Buss DH (1992) Vegetable dishes. Second supplement to the 5th edition of McCance and Widdowson’s The Composition of Foods. Royal Society of Chemistry, Cambridge
Brown KH, Rivera JA, Bhutta Z, International Zinc Nutrition Consultative Group (IZiNCG) et al (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S99–S203
Adams PS (2006) Data analysis and reporting. In: Dorak MT (ed) Real-time PCR (BIOS advanced methods). Taylor and Francis, Oxford, pp 39–62
Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193
Pfaffl MW (2006) Relative Quantification. In: Dorak MT (ed) Real-time PCR (BIOS advanced methods). Taylor and Francis Group, Oxford, pp 63–82
Amirabdollahian F, Ash H (2010) An estimate of phytate intake and molar ratio of phytate to zinc in the diet of the people in the United Kingdom. Public Health Nutr 13:1380–1388
Wang C-F, Tsay S-M, Lee CY et al (1992) Phytate content of Taiwanese diet determined by 31P Fourier transform nuclear magnetic resonance spectroscopy. J Agric Food Chem 40:1030–1033
Ma G, Li Y, Jin Y et al (2007) Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. Eur J Clin Nutr 61:368–374
Khokhar S, Pushpanjali FGR (1994) Phytate content of Indian foods and intakes by vegetarian Indians of Hisar Region, Haryana State. J Agric Food Chem 42:2440–2444
Kwun IS, Kwon CS (2000) Dietary molar ratios of phytate:zinc and millimolar ratios of phytate × calcium: zinc in South Koreans. Biol Trace Elem Res 75:29–41
Prynne CJ, McCarron A, Wadsworth MEJ et al (2010) Dietary fibre and phytate—a balancing act: results from three time points in a British Birth Cohort. Br J Nutr 103:274–280
Fitzgerald SL, Gibson RS, Quan de Serrano J et al (1993) Trace element intakes and dietary phytate/Zn and Ca × phytate/Zn millimolar ratios of periurban Guatemalan women during the third trimester of pregnancy. Am J Clin Nutr 57:195–201
Hinderliter AL, Babyak MA, Sherwood A et al (2001) The DASH diet and insulin sensitivity. Curr Hypertens Rep 13:67–73
Samman S (1993) The effect of dietary fibre on the bioavailability of zinc: some experimental considerations. In: Samman S and Annison G (eds) Dietary fibre and beyond: Australian perspectives, vol 1. Nutrition Society of Australia Occasional Publications, Sydney, pp. 203–209
Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18
Harland BF (1989) Dietary fibre and mineral bioavailability. Nutr Res Rev 2:133–147
Department of Health and Family Services (1998) The Australian guide to healthy eating. DHFS, Canberra
American Diabetes Association (2008) Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 31:S61–S78
Brown L, Rosner B, Willet WW et al (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69:30–42
Anderson JW, Randles KM, Kendall CW et al (2004) Carbohydrate and fiber recommendations for individuals with diabetes: a quantitative assessment and meta-analysis of the evidence. J Am Coll Nutr 23:5–17
Harland BF, Smith SA, Howard MP et al (1988) Nutritional status and phytate:zinc and phytate x calcium:zinc dietary molar ratios of lacto-ovo vegetarian Trappist monks: 10 years later. J Am Diet Assoc 88:1562–1566
Hunt JR, Beiseigel JM (2009) Dietary calcium does not exacerbate phytate inhibition of zinc absorption by women from conventional diets. Am J Clin Nutr 89:839–843
Bindra GS, Gibson RS, Thompson UL (1986) [Phytate][calcium]/[zinc] ratios in Asian immigrant lacto-ovo vegetarian diets and their relationship to zinc nutriture. Nutr Res 6:475–483
Cossack ZT, Prasad AS (1983) Effect of protein source on the bioavailability of zinc in human subjects. Nutr Res 3:23–31
Food and Nutrition Board: Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington
Samman S (2011) Challenges and opportunities in the assessment of zinc status. Nutr Diet 68:95–96
Aydemir TB, Blanchard RK, Cousins RJ (2006) Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci USA 103:1699–1704
Andree KB, Kim J, Kirschke CP et al (2004) Investigation of lymphocyte gene expression for use as biomarkers for zinc status in humans. J Nutr 134:1716–1723
Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172
Gaither LA, Eide DJ (2001) The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem 276:22258–22264
Argiratos V, Samman S (1994) The effect of calcium carbonate and calcium citrate on the absorption of zinc in healthy female subjects. Eur J Clin Nutr 48:198–204
Acknowledgements
The study was supported by the Sydney University Nutrition Research Foundation. The authors thank Drs E. Ferguson and F. Amirabdollahian for assistance with the phytate database. The authors do not have any conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Foster, M., Karra, M., Picone, T. et al. Dietary Fiber Intake Increases the Risk of Zinc Deficiency in Healthy and Diabetic Women. Biol Trace Elem Res 149, 135–142 (2012). https://doi.org/10.1007/s12011-012-9408-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12011-012-9408-7