Abstract
Alzheimer’s disease (AD) and cancer have much in common than previously recognized. These pathologies share common risk factors (inflammation and aging), with similar epidemiological and biochemical features such as impaired mitochondria. Metabolic reprogramming occurs during aging and inflammation. We assume that inflammation is directly responsible of the Warburg effect in cancer cells, with a decreased oxidative phosphorylation and a compensatory highthroughput glycolysis (HTG). Similarly, the Warburg effect in cancer is thought to support an alkaline intracellular pH (pHi), a key component of unrelenting cell growth. In the brain, inflammation results in increased secretion of lactate by astrocytes. The increased uptake of lactic acid by neurons results in the inverse Warburg effect, such as seen in AD. The neuronal activity is dampened by a fall of pHi. Pronounced cytosol acidification results in decreased mitochondrial energy yield as well as apoptotic cell death. The link between AD and cancer is reinforced by the fact that treatment aiming at restoring the mitochondrial activity have been experimentally shown to be effective in both diseases. Low carb diet, lipoic acid, and/or methylene blue could then appear promising in both sets of these clinically diverse diseases.





Similar content being viewed by others
References
Abolhassani M, Wertz X, Pooya M, Chaumet-Riffaud P, Guais A, Schwartz L (2008) Hyperosmolarity causes inflammation through the methylation of protein phosphatase 2A. Inflamm Res 57(9):419–429. https://doi.org/10.1007/s00011-007-7213-0
Adami HO, Hunter DJ, Trichopoulos D (eds) (2008) Textbook of cancer epidemiology. Oxford University Press, USA. https://www.oxfordscholarship.com/view/10.1093/oso/9780190676827.001.0001/oso-9780190676827
Aerts RJ, Durston AJ, Moolenaar WH (1985) Cytoplasmic PH and the regulation of the dictyostelium cell cycle. Cell 43(3 Pt 2):653–657
Afridi R, Kim J-H, Rahman MH, Suk K (2020) Metabolic regulation of glial phenotypes: implications in neuron–glia interactions and neurological disorders. Front Cell Neurosci. https://doi.org/10.3389/fncel.2020.00020
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Bashir Adil HH, Elhassan GO, Ibrahim ME et al (2014) Glycolysis, tumor metabolism, cancer growth and dissemination. a new PH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 1(12):777–802. https://doi.org/10.18632/oncoscience.109
Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet (London, England) 357(9255):539–545. https://doi.org/10.1016/S0140-6736(00)04046-0
Barañano KW, Hartman AL (2008) The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Opt Neurol 10(6):410–419
Basurto-Islas G, Grundke-Iqbal I, Tung YC, Liu F, Iqbal K (2013) Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease. J Biol Chem 288(24):17495–17507. https://doi.org/10.1074/jbc.M112.446070
Bermejo-Pareja F, Benito-León J, Vega S, Medrano MJ, Román GC (2008) Incidence and subtypes of dementia in three elderly populations of central Spain. J Neurol Sci 264(1):63–72. https://doi.org/10.1016/j.jns.2007.07.021
Blass JP, Sheu RK, Gibson GE (2000) Inherent abnormalities in energy metabolism in Alzheimer disease: interaction with cerebrovascular compromise. Ann N Y Acad Sci 903(1):204–221. https://doi.org/10.1111/j.1749-6632.2000.tb06370.x
Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. The Lancet 368(9533):387–403. https://doi.org/10.1016/S0140-6736(06)69113-7
Boron WF (2004) Regulation of intracellular PH. Adv Physiol Educ 28(4):160–179. https://doi.org/10.1152/advan.00045.2004
Brandt J, Buchholz A, Henry-Barron B, Vizthum D, Avramopoulos D, Cervenka MC (2019) Preliminary report on the feasibility and efficacy of the modified Atkins diet for treatment of mild cognitive impairment and early Alzheimer’s disease. J Alzheimer’s Dis 68(3):969–981. https://doi.org/10.3233/JAD-180995
Caplin M, Festenstein F (1975) Relation between lung cancer, chronic bronchitis, and airways obstruction. BMJ 3(5985):678–680
Caplliure-Llopis J, Peralta-Chamba T, Carrera-Juliá S, Cuerda-Ballester M, Drehmer-Rieger E, López-Rodriguez MM, de la Rubia Ortí JE (2019) Therapeutic alternative of the ketogenic mediterranean diet to improve mitochondrial activity in amyotrophic lateral sclerosis (ALS): a comprehensive review. Food Sci Nutr 8(1):23–35. https://doi.org/10.1002/fsn3.1324
Cartier N, Lewis C-A, Zhang R, Rossi MVF (2014) The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 128(3):363–380. https://doi.org/10.1007/s00401-014-1330-y
Christen R, Schackmann RW, Shapiro BM (1983) Metabolism of sea urchin sperm. interrelationships between intracellular PH, ATPase Activity, and mitochondrial respiration. J Biol Chem 258(9):5392–5399
Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL (2008) Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 314(10):2076–2089. https://doi.org/10.1016/j.yexcr.2008.03.012
Cotran RS, Majno G (1964) The delayed and prolonged vascular leakage in inflammation. I. Topography of the leaking vessels after thermal injury. Am J Pathol 45(August):261–281
Craft S (2009) The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 66(3):300–305. https://doi.org/10.1001/archneurol.2009.27
da Veiga Moreira J, Peres S, Steyaert J-M, Bigan E, Paulevé L, Nogueira ML, Schwartz L (2015) Cell cycle progression is regulated by intertwined redox oscillators. Theor Biol Med Model 12(May):10. https://doi.org/10.1186/s12976-015-0005-2
da Veiga Moreira J, Hamraz M, Abolhassani M, Bigan E, Pérès S, Paulevé L, Nogueira ML, Steyaert J-M, Schwartz L (2016) The redox status of cancer cells supports mechanisms behind the Warburg effect. Metabolites. https://doi.org/10.3390/metabo6040033
Demetrius LA, Simon DK (2013) The Inverse Association of Cancer and Alzheimer’s: a bioenergetic mechanism. J R Soc Interface 10(82):20130006. https://doi.org/10.1098/rsif.2013.0006
Demetrius LA, Magistretti PJ, Pellerin L (2014) Alzheimer’s disease: the amyloid hypothesis and the inverse Warburg effect. Front Physiol 5:522. https://doi.org/10.3389/fphys.2014.00522
Descalzi G, Gao V, Steinman MQ, Suzuki A, Alberini CM (2019) Lactate from astrocytes fuels learning-induced MRNA translation in excitatory and inhibitory neurons. Commun Biol. https://doi.org/10.1038/s42003-019-0495-2
Driver JA, Beiser A, Au R, Kreger BE, Splansky GL, Kurth T, Kiel DP, Lu KP, Seshadri S, Wolf PA (2012) Inverse Association between Cancer and Alzheimer’s Disease: results from the Framingham Heart Study. BMJ 344(March):e1442. https://doi.org/10.1136/bmj.e1442
Epstein T, Gatenby RA, Brown JS (2017) The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS ONE 12(9):e0185085. https://doi.org/10.1371/journal.pone.0185085
Erlichman JS, Hewitt A, Damon TL, Hart M, Kurascz J, Li A, Leiter JC (2008) Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte–neuron lactate-shuttle hypothesis. J Neurosci 28(19):4888–4896. https://doi.org/10.1523/JNEUROSCI.5430-07.2008
Fang B, Wang D, Huang M, Yu G, Li H (2010) Hypothesis on the relationship between the change in intracellular PH and incidence of sporadic Alzheimer’s disease or vascular dementia. Int J Neurosci 120(9):591–595. https://doi.org/10.3109/00207454.2010.505353
Fuller S, Steele M, Münch G (2010) Activated astroglia during chronic inflammation in Alzheimer’s disease—do they neglect their neurosupportive roles? Mutat Res 690(1):40–49. https://doi.org/10.1016/j.mrfmmm.2009.08.016
Garber JE, Offit K (2005) Hereditary cancer predisposition syndromes. J Clin Oncol 23(2):276–292. https://doi.org/10.1200/JCO.2005.10.042
Ghalebani L, Wahlström A, Danielsson J, Wärmländer SKTS, Gräslund A (2012) PH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-β peptide. Biochem Biophys Res Commun 421(3):554–560. https://doi.org/10.1016/j.bbrc.2012.04.043
Giulian D, Haverkamp LJ, Yu JH, Karshin W, Tom D, Li J, Kirkpatrick J, Kuo Y-M, Roher AE (1996) Specific domains of β-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci 16(19):6021–6037. https://doi.org/10.1523/JNEUROSCI.16-19-06021.1996
Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88(4):584–593. https://doi.org/10.1016/j.bcp.2013.11.010
Hager K, Kenklies M, McAfoose J, Engel J, Münch G (2007) Alpha-lipoic acid as a new treatment option for Alzheimer’s disease—a 48 months follow-up analysis. J Neural Transm Suppl 72:189–193
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Orozco JDP, Devesa P et al (2017) Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 43(April):157–179. https://doi.org/10.1016/j.semcancer.2017.02.003
Hoyer S (1991) Abnormalities of glucose metabolism in Alzheimer’s disease. Ann N Y Acad Sci 640(1):53–58. https://doi.org/10.1111/j.1749-6632.1991.tb00190.x
Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707. https://doi.org/10.1016/j.cell.2008.08.021
Iaccarino L, Sala A, Caminiti SP, Perani D (2017) The emerging role of PET imaging in dementia. F1000Research 6:1830. https://doi.org/10.12688/f1000research.11603.1
Iglesias J, Morales L, Barreto GE (2017) Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs. Mol Neurobiol 54(4):2518–2538. https://doi.org/10.1007/s12035-016-9833-2
Israël M, Schwartz L (2020) The metabolic rewiring observed in cancer renders tumor cells dependent of ketone bodies and vulnerable to SCOT inhibition. Endocrinol Diabetes Metabol J 4:14
James SJ, Pogribna M, Miller BJ, Bolon B, Muskhelishvili L (1997) Characterization of cellular response to silicone implants in rats: implications for foreign-body carcinogenesis. Biomaterials 18(9):667–675. https://doi.org/10.1016/S0142-9612(96)00189-5
Jin L, Zhou Y (2019) Crucial role of the pentose phosphate pathway in malignant tumors. OncolLett 17(5):4213–4221. https://doi.org/10.3892/ol.2019.10112
Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 41(2):160–165. https://doi.org/10.1002/ana.410410206
Kumar A, Haery C, Paladugu B, Kumar A, Symeoneides S, Taiberg L, Osman J et al (2006) ‘The Duration of Hypotension before the Initiation of Antibiotic Treatment Is a Critical Determinant of Survival in a Murine Model of Escherichia Coli Septic Shock: Association with Serum Lactate and Inflammatory Cytokine Levels’. J Infect Dis 193(2):251–258. https://doi.org/10.1086/498909
Lauwers S (1978) Lactic-acid concentration in cerebrospinal fluid and differential diagnosis of meningitis. The Lancet 312(8081):163. https://doi.org/10.1016/S0140-6736(78)91557-X
Levy Nogueira M, da Veiga Moreira J, Baronzio GF, Dubois B, Steyaert J-M, Schwartz L (2015) Mechanical stress as the common denominator between chronic inflammation, cancer, and Alzheimer’s disease. Front Oncol. https://doi.org/10.3389/fonc.2015.00197
Liguori C, Stefani A, Sancesario G, Sancesario GM, Marciani MG, Pierantozzi M (2015) CSF lactate levels, τ proteins, cognitive decline: a dynamic relationship in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86(6):655–659. https://doi.org/10.1136/jnnp-2014-308577
López-Lázaro M (2008) The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem 8(3):305–312
Mächler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, Kaelin V et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23(1):94–102. https://doi.org/10.1016/j.cmet.2015.10.010
Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19(4):235–249. https://doi.org/10.1038/nrn.2018.19
Maki PM, Henderson VW (2012) Hormone therapy, dementia, and cognition: the women’s health initiative ten years on. Climacteric: J Int Menopause Soc 15(3):256–262. https://doi.org/10.3109/13697137.2012.660613
Marcoux J, McArthur DA, Miller C, Glenn TC, Villablanca P, Martin NA, Hovda DA, Alger JR, Vespa PM (2008) Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 36(10):2871–2877. https://doi.org/10.1097/CCM.0b013e318186a4a0
Mosconi L, Rahman A, Diaz I, Wu X, Scheyer O, Hristov HW, Vallabhajosula S, Isaacson RS, Mony MJ, de Leon MJ, Brinton RD (2018) Increased Alzheimer’s risk during the menopause transition: a 3-year longitudinal brain imaging study. PLoS ONE 13(12):e0207885. https://doi.org/10.1371/journal.pone.0207885
Nguyen HB, Loomba M, Yang JJ, Jacobsen G, Shah K, Otero RM, Suarez A, Parekh H, Jaehne A, Rivers EP (2010) Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock. J Inflamm 7(January):6. https://doi.org/10.1186/1476-9255-7-6
Nogueira ML, Hamraz M, Abolhassani M, Bigan E, Lafitte O, Steyaert J-M, Dubois B, Schwartz L (2018) Mechanical stress increases brain amyloid β, Tau, and α-synuclein concentrations in wild-type mice. Alzheimer’s Dement 14(4):444–453. https://doi.org/10.1016/j.jalz.2017.11.003
Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665. https://doi.org/10.1111/bph.13139
Ortega AD, Sánchez-Aragó M, Giner-Sánchez D, Sánchez-Cenizo L, Willers I, Cuezva JM (2009) Glucose avidity of carcinomas. Cancer Lett 276(2):125–135. https://doi.org/10.1016/j.canlet.2008.08.007
Osmanovic-Barilar J, Salkovic-Petrisi M (2016) Evaluating the role of hormone therapy in postmenopausal women with Alzheimer’s disease. Drugs Aging 33(11):787–808. https://doi.org/10.1007/s40266-016-0407-9
Paban V, Manrique C, Filali M, Maunoir-Regimbal S, Fauvelle F, Alescio-Lautier B (2014) Therapeutic and preventive effects of methylene blue on Alzheimer’s disease pathology in a transgenic mouse model. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2013.06.033
Palsson-McDermott EM, O’Neill LAJ (2013) The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays 35(11):965–973. https://doi.org/10.1002/bies.201300084
Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Zecca C et al (2016) Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res Int. https://doi.org/10.1155/2016/3245935
Paris S, Pouysségur J (1984) Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. J Biol Chem 259(17):10989–10994
Pellerin L, Bouzier-Sore A-K, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262. https://doi.org/10.1002/glia.20528
Perry EK, Perry RB, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme A-acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18(1):105–110. https://doi.org/10.1016/0304-3940(80)90220-7
Poteet E, Winters A, Yan L-J, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang S-H (2012) Neuroprotective actions of methylene blue and its derivatives. PLoS ONE 7(10):e48279. https://doi.org/10.1371/journal.pone.0048279
Pouysségur J, Franchi A, Kohno M, L'Allemain G, Paris S (1986) Na+-H+ exchange and growth control in fibroblasts: a genetic approach. In: Current topics in membranes and transport, vol 2. Academic Press. pp 201–220. https://www.sciencedirect.com/science/article/pii/S0070216108607340
Ratnakumar A, Zimmerman SE, Jordan BA, Mar JC (2019) Estrogen activates Alzheimer’s disease genes. Alzheimer’s Dement (New York, N. Y.) 5:906–917. https://doi.org/10.1016/j.trci.2019.09.004
Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Guéant JL (1998) Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology 44(5):300–304. https://doi.org/10.1159/000022031
Rehncrona S (1985) Brain acidosis. Ann Emerg Med 14(8):770–776. https://doi.org/10.1016/S0196-0644(85)80055-X
Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152. https://doi.org/10.1038/nrneurol.2011.2
Rettberg JR, Yao J, Brinton RD (2014) Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 35(1):8–30. https://doi.org/10.1016/j.yfrne.2013.08.001
Rial E, González-Barroso M, Fleury C, Iturrizaga S, Sanchis D, Jiménez-Jiménez J, Ricquier D, Goubern M, Bouillaud F (1999) Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J 18(21):5827–5833. https://doi.org/10.1093/emboj/18.21.5827
Riha PD, Bruchey AK, Echevarria DJ, Gonzalez-Lima F (2005) Memory facilitation by methylene blue: dose-dependent effect on behavior and brain oxygen consumption. Eur J Pharmacol 511(2–3):151–158. https://doi.org/10.1016/j.ejphar.2005.02.001
Ringehan M, McKeating JA, Protzer U (2017) Viral hepatitis and liver cancer. Philos Trans R Soc B 372(1732):20160274. https://doi.org/10.1098/rstb.2016.0274
Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 61(1):1–24. https://doi.org/10.1016/S0361-9230(03)00067-4
Ross JM, Öberg J, Brené S, Coppotelli G, Terzioglu M, Pernold K, Goiny M et al (2010) High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci 107(46):20087–20092. https://doi.org/10.1073/pnas.1008189107
Rossignol F, Solares M, Balanza E, Coudert J, Clottes E (2003) Expression of lactate dehydrogenase A and B genes in different tissues of rats adapted to chronic hypobaric hypoxia. J Cell Biochem 89(1):67–79. https://doi.org/10.1002/jcb.10484
Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Therap 314(2):738–744. https://doi.org/10.1124/jpet.105.086553
Sánchez-Valle J, Tejero H, Ibáñez K, Portero JL, Krallinger M, Al-Shahrour F, Tabarés-Seisdedos R, Baudot A, Valencia A (2017) A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer’s disease, glioblastoma and lung cancer. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-04400-6
Schwartz L, Israël M, Philippe I (2009a) Inflammation and carcinogenesis: a change in the metabolic process. In: Baronzio G, Fiorentini G, Cogle CR (eds) Cancer microenvironment and therapeutic implications: tumor pathophysiology mechanisms and therapeutic strategies. Springer Netherlands, Dordrecht. p 3–18. https://doi.org/10.1007/978-1-4020-9576-4_1
Schwartz L, Guais A, Pooya M, Abolhassani M (2009b) Is inflammation a consequence of extracellular hyperosmolarity? J Inflamm 6:21. https://doi.org/10.1186/1476-9255-6-21
Schwartz L, Abolhassani M, Guais A, Sanders E, Steyaert J-M, Campion F, Israël M (2010) A combination of alpha lipoic acid and calcium hydroxycitrate is efficient against mouse cancer models: preliminary results. Oncol Rep 23(5):1407–1416
Schwartz L, Buhler L, Icard P, Lincet H, Steyaert J-M (2014) Metabolic treatment of cancer: intermediate results of a prospective case series. Anticancer Res 34(2):973–980
Schwartz L, Guais A, Israël M, Junod B, Steyaert J-M, Crespi E, Baronzio G, Abolhassani M (2013) Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin. Invest New Drugs 31(2):256–264. https://doi.org/10.1007/s10637-012-9849-z
Schwartz L, Supuran CT, Alfarouk KO (2017a) The Warburg effect and the hallmarks of cancer. Anticancer Agents Med Chem 17(2):164–170
Schwartz L, Seyfried T, Alfarouk KO, Da Veiga Moreira J, Fais S (2017b) Out of Warburg effect: an effective cancer treatment targeting the tumor specific metabolism and dysregulated PH. Semin Cancer Biol 43(April):134–138. https://doi.org/10.1016/j.semcancer.2017.01.005
Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(6738):A23–A31. https://doi.org/10.1038/399a023
Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metabol 7:7. https://doi.org/10.1186/1743-7075-7-7
Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S, Waichunas D et al (2014) A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimer’s Dis 38(1):111–120. https://doi.org/10.3233/JAD-130722
Sinning A, Hübner CA (2013) ‘Minireview: PH and synaptic transmission. FEBS Lett 587(13):1923–1928. https://doi.org/10.1016/j.febslet.2013.04.045
Sofou K, Dahlin M, Hallböök T, Lindefeldt M, Viggedal G, Darin N (2017) Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes. J Inherit Metab Dis 40(2):237–245. https://doi.org/10.1007/s10545-016-0011-5
Sonntag K-C, Ryu W-I, Amirault KM, Healy RA, Siegel AJ, McPhie DL, Forester B, Cohen BM (2017) Late-onset Alzheimer’s disease is associated with inherent changes in bioenergetics profiles. Sci Rep 7(1):14038. https://doi.org/10.1038/s41598-017-14420-x
Stafstrom CE, Rho JM (2004) Epilepsy and the ketogenic diet. Springer Science & Business Media, Berlin
Sun B, Karin M (2012) Obesity, inflammation, and liver cancer. J Hepatol 56(3):704–713. https://doi.org/10.1016/j.jhep.2011.09.020
Swerdlow RH, Koppel S, Weidling I, Hayley C, Ji Y, Wilkins HM (2017) Mitochondria, cybrids, aging, and Alzheimer’s disease. Prog Mol Biol Transl Sci 146:259–302. https://doi.org/10.1016/bs.pmbts.2016.12.017
Tabarés-Seisdedos R, Rubenstein JL (2013) Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci 14(4):293–304. https://doi.org/10.1038/nrn3464
Taylor MK, Swerdlow RH, Sullivan DK (2019) Dietary neuroketotherapeutics for Alzheimer’s disease: an evidence update and the potential role for diet quality. Nutrients. https://doi.org/10.3390/nu11081910
Tucker D, Lu Y, Zhang Q (2018) From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol Neurobiol 55(6):5137–5153. https://doi.org/10.1007/s12035-017-0712-2
Uguen M, Dewitte J-D, Marcorelles P, Loddé B, Pougnet R, Saliou P, Braekeleer MD, Arnaud Uguen (2017) Asbestos-related lung cancers: a retrospective clinical and pathological study. Mol Clin Oncol 7(1):135–139. https://doi.org/10.3892/mco.2017.1277
Wainwright M, Phoenix DA, Burrow SM, Waring J (1999) Cytotoxicity and adjuvant activity of cationic photosensitizers in a multidrug resistant cell line. J Chemother 11(1):61–68. https://doi.org/10.1179/joc.1999.11.1.61
Wainwright M, Phoenix DA, Rice L, Burrow SM, Waring J (1997) Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. J Photochem Photobiol B 40(3):233–239. https://doi.org/10.1016/s1011-1344(97)00061-4
Walz W, Mukerji S (1988) Lactate production and release in cultured astrocytes. Neurosci Lett 86(3):296–300. https://doi.org/10.1016/0304-3940(88)90499-5
Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M (2019) Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener 14(1):2. https://doi.org/10.1186/s13024-019-0305-9
Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314
Waring SC, Rosenberg RN (2008) Genome-wide association studies in Alzheimer disease. Arch Neurol 65(3):329–334. https://doi.org/10.1001/archneur.65.3.329
Xiang Y, Xu G, Weigel-Van Aken KAK (2010) Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone protein. PLoS ONE 5(11):e13820. https://doi.org/10.1371/journal.pone.0013820
Xiong Z-G, Pignataro G, Li M, Chang S-Y, Simon RP (2008) Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol 8(1):25–32. https://doi.org/10.1016/j.coph.2007.09.001
Yang S-H, Li W, Sumien N, Forster M, Simpkins JW, Liu R (2017) Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: methylene blue connects the dots. Prog Neurobiol 157(October):273–291. https://doi.org/10.1016/j.pneurobio.2015.10.005
Yao J, Hamilton RT, Cadenas E, Brinton RD (2010) Decline in mitochondrial bioenergetics and shift to ketogenic profile in brain during reproductive senescence. Biochimica et Biophysica Acta 1800(10):1121–1126. https://doi.org/10.1016/j.bbagen.2010.06.002
Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106(34):14670–14675. https://doi.org/10.1073/pnas.0903563106
Yates CM, Butterworth J, Tennant MC, Gordon A (1990) Enzyme activities in relation to PH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem 55(5):1624–1630. https://doi.org/10.1111/j.1471-4159.1990.tb04948.x
Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res: CR 34:111. https://doi.org/10.1186/s13046-015-0221-y
Zhang L, Joshi AK, Smith S (2003) Cloning, expression, characterization, and interaction of two components of a human mitochondrial fatty acid synthase malonyltransferase and acyl carrier protein. J Biol Chem 278(41):40067–40074. https://doi.org/10.1074/jbc.M306121200
Zhou N, Gordon GRJ, Feighan D, MacVicar BA (2010) Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cereb Cortex 20(11):2614–2624. https://doi.org/10.1093/cercor/bhq018
Acknowledgments
We want to thank Eleonore Moine and Jean-François Le Bitoux for the helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Schwartz, L., Peres, S., Jolicoeur, M. et al. Cancer and Alzheimer’s disease: intracellular pH scales the metabolic disorders. Biogerontology 21, 683–694 (2020). https://doi.org/10.1007/s10522-020-09888-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10522-020-09888-6