Skip to main content
Log in

The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2′-deoxyguanosine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Methylglyoxal and glyoxal are generated from the oxidation of carbohydrates and lipids, and like d-glucose have been shown to nonenzymatically react with proteins to form advanced glycation end products (AGEs). AGEs can occur both in vitro and in vivo, and these compounds have been shown to exacerbate many of the long-term complications of diabetes. Earlier studies in our laboratory reported d-glucose, d-galactose, and d/l-glyceraldehyde formed AGEs with nucleosides. The objective of this study was to focus on purines and pyrimidines and to analyze these DNA nucleoside derived AGE adducts with glyoxal or methylglyoxal using a combination of analytical techniques. Studies using UV and fluorescence spectroscopy along with mass spectrometry provided for a thorough analysis of the nucleoside AGEs and demonstrated that methylglyoxal and glyoxal reacted with 2′-deoxyguanosine via the classic Amadori pathway, and did not react appreciably with 2′-deoxyadenosine, 2′-deoxythymidine, and 2′-deoxycytidine. Additional findings revealed that methylglyoxal was more reactive than glyoxal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Neglia CL, Cohen HJ, Gaber AR, Ellis PP, Thorpe SR, Baynes JW (1983) J Biol Chem 258:14279–14283

    CAS  Google Scholar 

  2. Dutta U, Cohenford MA, Dain JA (2005) Anal Biochem 345:171–180

    Article  CAS  Google Scholar 

  3. Wautier JL, Guillausseau PJ (2001) Diabetes Metab 27:535–542

    CAS  Google Scholar 

  4. Sensi, M (1995) Diabetes Res Clin Pract 28:9–17

    Article  CAS  Google Scholar 

  5. Li YY, Dutta U, Cohenford MA, Dain JA (2007) Bioorg Chem 35:417–429

    Article  CAS  Google Scholar 

  6. Ahmed N, Howell S, Smith K, Szwergold B (2003) Biochim Biophys Acta 1639:121–132

    CAS  Google Scholar 

  7. Thornalley PJ (1996) Gen Pharmacol 27:565–573

    CAS  Google Scholar 

  8. Fukunaga M, Miyata S, Higo S, Hamada Y, Ueyama S, Kasuga M (2005) Ann N Y Acad Sci 1043:151–157

    Article  CAS  Google Scholar 

  9. Karachalias M, Babaei-Jadidi R, Ahmed N, Thornalley PJ (2003) Biochem Soc Trans 31:1423–1425

    Article  CAS  Google Scholar 

  10. Beisswenger P, Howell S, Nelson R (2003) Biochem Soc Trans 31:1358–1363

    CAS  Google Scholar 

  11. Li YY, Cohenford MA, Dutta U, Dain JA (2007) FASEB J 21:499.2

    Google Scholar 

  12. Cohenford MA, Urbanowski JC, Shepard DC, Dain JA (1983) Immunol Commun 12:189–200

    CAS  Google Scholar 

  13. Chen SP, Huang T, Sun SG (2005) J Chromatogr A 1089:142–147

    Article  CAS  Google Scholar 

  14. Khuhawar MY, Kandhro AJ, Khand FD (2006) Anal Lett 39:2205–2215

    Article  CAS  Google Scholar 

  15. De Sa PFG, Treubig JM, Brown PR, Dain JA (2001) Food Chem 72:379–384

    Article  Google Scholar 

  16. Miyata T, Kurokawa K, Van Ipersele de Strihon C (2000) J Am Soc Nephrol 11:1744–1752

    CAS  Google Scholar 

  17. Biemel KM, Reihl O, Conrad J, Lederer MO (2001) J Biol Chem 26:23405–23412

    Article  Google Scholar 

  18. Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M (1994) Proc Natl Acad Sci USA 91:11704–11708

    Article  CAS  Google Scholar 

  19. Daniels BS, Hauser EB (1992) Diabetes 41:1415–1421

    Article  CAS  Google Scholar 

  20. Brownlee M (1994) Diabetes 43:836–841

    CAS  Google Scholar 

  21. Colaco CA, Harrington CR (1994) Neuroreport 5:859–861

    Article  CAS  Google Scholar 

  22. Li H, Nakamura S, Miyazaki S, Morita T, Suzuki M, Pischetsrieder M, Niwa T (2006) Kidney Int 69:388–392

    Article  CAS  Google Scholar 

  23. Dutta U, Cohenford MA, Dain JA (2006) Anal Bioanal Chem 386:1633–1640

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was made possible by the use of Research and Bioinformatics Core Facilities supported jointly by NCRR/NIH grant no. P20 RR016457 and the Network institutions and by funds that were gifted by Monica Hatfield to Marshall University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel A. Dain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Figures

(PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Cohenford, M.A., Dutta, U. et al. The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2′-deoxyguanosine. Anal Bioanal Chem 390, 679–688 (2008). https://doi.org/10.1007/s00216-007-1682-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1682-4

Keywords

Navigation